Monday, March 4, 2024 - 11:15 Sala di Rappresentanza Dipartimento di Matematica Università degli Studi di Milano Via Cesare Saldini 50
SPEAKER: Joachim Kerner (FernUniversität in Hagen)
On Bose-Einstein Condensation in the Random Kac-Luttinger Model
This talk is concerned with a random many-particle model originally considered by Kac and Luttinger in 1973 in order to study a well-known quantum phase transition known as Bose–Einstein condensation (BEC). Generally speaking, to understand this phase transition in interacting many-particle systems is a current hot topic in mathematical physics. However, due to the complexity of the underlying random one-particle model, the nature of the BEC in the non-interacting Kac-Luttinger model was understood only recently based on results obtained by Alain-Sol Sznitman (ETH). In this talk, our goal will be to understand the impact of repulsive two-particle interactions on this condensate. We will see that, due to the spatial localization of the condensate, strong enough interactions will immediately destroy it. On the other hand, for two-particle interactions of a mean-field type, we prove BEC in the interacting Kac–Luttinger model into a minimizer of a Hartree-type functional. This talk is based on joint work with C. Boccato (Milan), M. Pechmann (Tennessee), and W. Spitzer (Hagen).
The seminar is part of the activities of the project PRIN 2022AKRC5P “Interacting Quantum Systems: Topological Phenomena and Effective Theories” financed by the European Union – Next Generation EU.