05/06/2024 : Umberto Morellini @UniMi

Wednesday, June 5, 2024 - 11:15
Sala di Rappresentanza
Dipartimento di Matematica
Università degli Studi di Milano
Via Cesare Saldini 50

________________________________________________________________________

SPEAKER: Umberto Morellini (Université Paris Dauphine, CEREMADE, PSL) ________________________________________________________________________

The free energy of Dirac’s vacuum in purely magnetic fields

The Dirac vacuum is a non-linear polarisable medium rather than an empty space. This non-linear behaviour starts to be significant for extremely large electromagnetic fields such as the magnetic field on the surface of certain neutron stars. Even though the null temperature case was deeply studied in the past decades, the problem at non-zero temperature needs to be better understood.
In this talk, we will present the first rigorous derivation of the one-loop effective magnetic Lagrangian at positive temperature, a non-linear functional describing the free energy of quantum vacuum in a classical magnetic field. After introducing our model, we will properly define the free energy functional using the Pauli-Villars regularisation technique in order to remove the worst ultraviolet divergences, which represent a well known issue of the theory. The study of the properties of this functional will be addressed before focusing on the limit of slowly varying classical magnetic fields. In this regime, one can prove the convergence of this functional to the Euler-Heisenberg
formula with thermal corrections, recovering the effective Lagrangian first derived by Dittrich in 1979. The talk is based on the work available at arXiv:2404.12733.

22/04/2024: Antoine Prouff @UniMi

Monday, April 22, 2024 - 11:15
Sala di Rappresentanza
Dipartimento di Matematica
Università degli Studi di Milano
Via Cesare Saldini 50

_________________________________________________________________________

SPEAKER: Antoine Prouff (Université Paris-Saclay, Laboratoire de Mathématique d’Orsay) _________________________________________________________________________

Egorov’s theorem in the Weyl-Hörmander calculus and application to the control of PDEs

It is known that geometric optics can be derived as the high-frequency limit of the wave equation, from both experimental and theoretical perspectives. This fact can be regarded as an instance of a “quantum-classical correspondence principle”, made rigorous by Egorov’s theorem, which relates the evolution of a linear PDE (e.g. the wave equation) to the natural underlying classical dynamics (e.g. the geodesic flow).

We will present a version of Egorov’s theorem in the Euclidean space, in the setting of the “Weyl-Hörmander calculus”. This general framework of microlocal analysis involves Riemannian metrics on the phase space adapted to the dynamics under consideration, and allows for a fairly large range of applications (study of Schrödinger, wave and transport equations).

If time allows, we will discuss in more detail an application to the observability of the Schrödinger equation with a confining potential in the Euclidean space.