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Canonical Typicality

Let HR be a high-dimensional subspace of the Hilbert space HS = Ha ⊗Hb,

where a is a small system with environment b in S = a∪ b. For ψ ∈ S(HR) let

ρψa := trb |ψ〉〈ψ|

be the reduced density matrix and let ρR = PR/dR (the normalized projection

to HR) with dR := dimHR . Then, for most ψ ∈ S(HR),

ρψa ≈ trb ρR ,

where “most ψ” refers to the uniform distribution uR over S(HR).

If ρR = ρmc (micro-canonical density matrix), b is large and a and b are weakly

interacting, trb ρmc is close to a canonical density matrix ρa,can = 1
Za
e−βHa .

This phenomenon was discovered by several groups independently (Gemmer,

Mahler (2003); Goldstein, Lebowitz, Tumulka, Zangh̀ı (2006); Popescu, Short,

Winter (2006)).
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Canonical Typicality

The distance between the two density matrices is measured in the trace norm;

for an operator M it is defined by

‖M‖tr := tr |M| = tr
√
M∗M.

Theorem 1 (Popescu, Short, Winter 2006)

Let Ha and Hb be Hilbert spaces of dimension da, db ∈ N respectively,

H = Ha ⊗Hb, HR be any subspace of H of dimension dR , ρR be 1/dR times

the projection to HR and uR the uniform distribution over S(HR). Then for

every ε > 0,

uR
{
ψ ∈ S(HR) :

∥∥ρψa − trb ρR
∥∥
tr
> ε
}
≤ 4d2

a exp

(
− dRε

2

18π3d2
a

)
.
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Lévy’s Lemma

Theorem 2 (Lévy’s Lemma)

Let H be a Hilbert space of finite dimension D, let f : S(H)→ R be a

function with Lipschitz constant η, let u be the uniform distribution over

S(H), and let ε > 0. Then,

u
{
ψ ∈ S(H) :

∣∣f (ψ)− u(f )
∣∣ > ε

}
≤ 4 exp

(
− C̃Dε2

η2

)
,

where C̃ = 2
9π3 and u(f ) :=

∫
S(H)

f (ψ) u(dψ).

⇒ Lipschitz functions on spheres in high-dimensional Hilbert spaces are

approximately constant!

Cornelia Vogel (University of Tübingen) 3 / 23
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Ideas of Proof (Lévy’s Lemma)

First show an analogous fact about Gaussian distributions:

Lemma 3 (Lévy’s Lemma for Gaussian random variables)

Let X = (X1, . . . ,XD) be a vector of independent (real) standard Gaussian

random variables. Let F : RD → R be a Lipschitz function with constant η

and let ε > 0. Then,

P {|F (X )− EF (X )| > ε} ≤ 2 exp

(
− 2ε2

π2η2

)
.

The proof makes heavy use of characteristics of Gaussian random

variables, e.g. the invariance of X under orthogonal transformations and

the form of the moment generating function of the Xi

The link between X and the uniform distribution on S(RD) is given by

the fact that X
‖X‖ is uniformly distributed on S(RD)
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GAP Measures

To any probability measure µ on S(H) we can associate a density matrix

ρµ by

ρµ =

∫
S(H)

µ(dψ) |ψ〉〈ψ|

For any density matrix ρ on H, the most spread-out distribution over

S(H) with density matrix ρ, is known as GAP(ρ) for Gaussian Adjusted

Projected measure; it was first introduced by Jozsa, Robb and Wootters

(1994) who showed that GAP(ρ) minimizes the “accessible information”

of an ensemble of wave functions under the constraint that its density

matrix is ρ; therefore they called it Scrooge measure.
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GAP Measures

If D = dimH <∞ and all eigenvalues of ρ are positive, then

dGAP(ρ)

du
(ψ) =

D

det ρ
〈ψ|ρ−1|ψ〉−D−1

GAP measures describe the thermal equilibrium distribution of the wave

function of the system a if ρ is a canonical density matrix (Goldstein,

Lebowitz, Mastrodonato, Tumulka, Zangh̀ı, 2016)

GAP measures can also be defined on separable Hilbert spaces (Tumulka,

2020)
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GAP Measures – Construction

Let ρ be a density matrix on H with eigenvalues pn and let {|n〉} be an

ONB of eigenvectors of ρ, i.e.

ρ =
∑
n

pn|n〉〈n|

Let Zn be a sequence of independent C-valued Gaussian random variables

with mean 0 and variances

E|Zn|2 = pn;

we define G (ρ) to be the distribution of the random vector

ΨG :=
∑
n

Zn|n〉
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GAP Measures – Construction

We define the adjusted Gaussian measure GA(ρ) on H by

GA(ρ)(dψ) = ‖ψ‖2G (ρ)(dψ);

this factor is needed to get the right density matrix after projecting the

distribution to S(H)

Let ΨGA be a GA(ρ)-distributed random vector. We define GAP(ρ) to be

the distribution of

ΨGAP :=
ΨGA

‖ΨGA‖
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Generalized Canonical Typicality

Theorem 4 (Teufel, Tumulka, V. 2023)

Let Ha and Hb be Hilbert spaces with da = dimHa <∞ and Hb separable.

Let ρ be a density matrix on H = Ha ⊗Hb. Then for every ε > 0,

GAP(ρ)
{
ψ ∈ S(H) :

∥∥ρψa − trb ρ
∥∥
tr
> ε
}
≤ 6d2

a exp

(
− C̃ε2

d2
a ‖ρ‖

)

for some universal constant C̃ > 0.
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Lévy’s Lemma for GAP measures

Theorem 5 (Teufel, Tumulka, V. 2023)

Let H be a separable Hilbert space, let f : S(H)→ R be a function with

Lipschitz constant η, let ρ be a density matrix on H, and let ε > 0. Then,

GAP(ρ)
{
ψ ∈ S(H) : |f (ψ)−GAP(ρ)(f )| > ε

}
≤ 6 exp

(
− Cε2

η2‖ρ‖

)
,

where C > 0 and GAP(ρ)(f ) =
∫
S(H)

f (ψ) GAP(ρ)(dψ).
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Remarks

If ρ = ρR , then ‖ρ‖ = 1/dR , GAP(ρ) = uR and we recover the canonical

typicality result up to worse constants

Our results do not require that H is finite-dimensional: only Ha needs to

be finite dimensional while Hb can be separable

One can show that for GAP(ρ)-most ψ ∈ S(H) and most t ∈ [0,T ],

ρψt
a ≈ trb ρt (“dynamical typicality”) [A statement s(t) holds for most

t ∈ [0,T ] if 1
T λ{t ∈ [0,T ] : s(t) does not hold} is small]

Lévy’s lemma does not hold for all rather-spread-out distributions on

S(H) (e.g. the von-Mises-Fisher distribution); it is a non-trivial property

of the family of GAP measures
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Remarks

If ρ = ρR , then ‖ρ‖ = 1/dR , GAP(ρ) = uR and we recover the canonical

typicality result up to worse constants

Our results do not require that H is finite-dimensional: only Ha needs to

be finite dimensional while Hb can be separable

One can show that for GAP(ρ)-most ψ ∈ S(H) and most t ∈ [0,T ],

ρψt
a ≈ trb ρt (“dynamical typicality”) [A statement s(t) holds for most

t ∈ [0,T ] if 1
T λ{t ∈ [0,T ] : s(t) does not hold} is small]
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Remarks

Generalized canonical typicality is not true in general if GAP(ρ) is

replaced by a different measure with density matrix ρ (e.g., the measure

concentrated on the eigenvectors of ρ)

Generalized canonical typicality is also not true in general if ‖ρ‖ is not

small, e.g. if one eigenvalue is large (and all the others small)

Our result expresses a kind of equivalence of ensembles: If a and b

interact weakly, then both ρmc and ρcan in HS = Ha ⊗Hb lead to

reduced density matrices close to a canonical density matrix for a,

trb ρmc ≈ ρa,can ≈ trb ρcan; we can start from either umc or GAP(ρcan)

and obtain for both ensembles of ψ that ρψa is nearly constant and nearly

canonical
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Normal Typicality - Setting

Following von Neumann (1929) we decompose the system’s

(finite-dimensional) Hilbert space H into an orthogonal sum of subspaces

(“macro spaces”) Hν representing different “macro states” ν,

H =
⊕
ν

Hν .

Usually there is one macro space Hν0 that is by far the highest-dimensional.

We call it the thermal equilibrium macro space and denote it by Heq.

Definition 6

Let δ > 0. We say that a statement s(t) holds for (1− δ)-most t ∈ [0,∞), if

lim inf
T→∞

1

T
λ{t ∈ [0,T ] : s(t) holds} ≥ 1− δ.
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Normal Typicality

Theorem 7 (Von Neumann 1929; Goldstein, Lebowitz, Mastrodonato,

Tumulka, Zangh̀ı 2010)

Let ε, δ, δ′ > 0. For (1− δ′)-most Hamiltonians H (where the eigenbasis of H

is chosen purely randomly among all orthonormal bases) with non-degenerate

eigenvalues and eigenvalue gaps, every ψ0 ∈ S(H) evolves so that for

(1− δ)-most t ∈ [0,∞),∣∣∣∣∣‖Pνψt‖2 −
dν
D

∣∣∣∣∣ < ε
dν
D

for all ν,

if dν = dimHν and D := dimH are sufficiently large (the precise conditions

involve ε, δ, δ′). Here Pν denotes the projection onto Hν . This behavior is

called normal typicality.
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Normal Typicality

Problem: Von Neumann’s assumptions on H are not very realistic since for

such H the decomposition of H and the energy eigenbasis are unrelated,

which e.g. implies that one would go from any macro state immediately to the

thermal equilibrium macro space (Goldstein, Hara, Tasaki 2013).

Therefore we are interested in a generalization of Normal Typicality to

Hamiltonians whose energy eigenbasis is not unrelated to the decomposition

of H, e.g. where H has some kind of band structure in a basis diagonalizing

the Pν ’s.

Cornelia Vogel (University of Tübingen) 15 / 23
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Generalized Normal Typicality and Deterministic Evolution
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Here the Hilbert space H is partitioned into four macro spaces Hν such that

d1 � d2 � d3 � d4 and ψ0 ∈ S(H2). The Hamiltonian is modelled by a

random matrix with a band structure in a basis that diagonalizes the Pν ’s.
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Rigorous Results – Generalized Normal Typicality

For two macro states µ and ν we define

Mµν :=
1

dµ

∑
e∈E

tr(PµΠePνΠe)

where E is the set of the distinct eigenvalues of H. Note that

Mµν = Eµ
(
‖Pνψt‖2

)
, where ‖Pνψt‖2 = limT→∞

1
T

∫
T

0
‖Pνψt‖2 dt.

Theorem 8 (Generalized Normal Typicality; Teufel, Tumulka, V. 2022)

Let H be a Hermitian D × D matrix and let ε, δ ∈ (0, 1). Then, (1− ε)-most

ψ0 ∈ S(Hµ) are such that for (1− δ)-most t ∈ [0,∞)

∣∣∣‖Pνψt‖2 −Mµν

∣∣∣ ≤ 4

√
DEDG

δεdµ
min

{
1,

dν
dµ

}
,

where DE and DG denote the maximum degeneracy of an eigenvalue and

eigenvalue gap.
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Deterministic Curves

Theorem 9 (Deterministic Curves; Teufel, Tumulka, V. 2022)

Let H be a Hermitian D × D matrix, let ε > 0 and t ∈ [0,∞). Then,

(1− ε)-most ψ0 ∈ S(Hµ) are such that∣∣∣‖Pνψt‖2 − Eµ‖Pνψt‖2
∣∣∣ ≤ 1√

εdµ
.

Moreover, for every T > 0, (1− ε)-most ψ0 ∈ S(Hµ) are such that

1

T

∫ T

0

∣∣∣‖Pνψt‖2 − Eµ‖Pνψt‖2
∣∣∣2 dt ≤ 1

εdµ
.

The quantity Eµ‖Pνψt‖2 may be computed as

Eµ‖Pνψt‖2 =
1

dµ
tr [Pµ exp(iHT )Pν exp(−iHT )] .
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Generalized Normal Typicality – Relative Errors?

Generalized Normal Typicality and the result about deterministic curves

can be generalized to arbitrary linear operators instead of Pν and

Generalized Normal Typicality also to finite times (however, the

equilibration times are extremely large, e.g. for a system of N particles

one would need that T � exp(N))

For small dν , the Mµν might become very small and then a small

absolute error might not be very meaningful; therefore we are interested

in relative errors for which we need lower bounds on Mµν

If H is a random matrix with continuously distributed entries, the

eigenvalues of H are, with probability 1, non-degenerate and we get

Mµν =
1

dµ

∑
n

〈n|Pµ|n〉〈n|Pν |n〉,

where {|n〉} is an ONB of eigenvectors of H
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Generalized Normal Typicality - Relative Errors?

The 〈n|Pν |n〉 can be bounded from below with the help of “no-gaps

delocalization”(Rudelson, Vershynin 2016): no significant fraction of the

coordinates of an eigenvector can carry only a negligible fraction of its

mass

For H = H0 + V , where H0 is a (deterministic) Hermitian D × D matrix

and V is a Hermitian Gaussian random matrix, we obtain Mµν &
(
dν
D

)16
(however, we expect that Mµν ∼ dν/D)
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Remarks and Open Questions

Can one find a (random matrix) model in which one can prove that

Mµν ∼ dν/D, one sees the transistions through the macro spaces as in

the simulations and one has “realistic thermalization times”?

Shiraishi and Tasaki (2024) recently proved thermalization of a free

fermion chain with Hamiltonian

H =
L∑

x=1

e iθc†x cx+1 + e−iθc†x+1cx ,

where θ > 0 is a small artificial phase to avoid eigenvalue degeneracy;

more precisely they showed that if the initial state is such that all

particles are in the left half of the chain, after a sufficiently large typical

time, the particle number in any region of the chain is close to its

equilibrium value (”〈ψt |Pneq|ψt〉 is small”)
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Remarks and Open Questions

Observation: Adding a small random perturbation λV to a Hamiltonian

H0 removes eigenvalue and gap degeneracy with probability 1; moreover,

with probability 1, there exists λ0 > 0 such that for all λ ∈ (0, λ0) the

Hamiltonian H = H0 + λV has non-degenerate eigenvalues and gaps

(Roos, Teufel, Tumulka, V. in preparation)

Applying directly Generalized Normal Typicality does help as the Mµν,λ

are difficult to compute and it is not clear whether Mµν,λ → Mµν for

λ→ 0 (and often also the Mµν are difficult to compute)

The eigenbasis of H0 + λV is, for small λ, close to an eigenbasis of H0; if

this eigenbasis fulfills the eigenstate thermalization hypothesis (ETH)

(i.e., that the expectation values in the eigenstates are close to the

thermal values), one can show thermalization when λ is small

Is it sufficient that there is an eigenbasis of H0 that fulfills the ETH to

show thermalization at least for typical (non-equilibrium) initial wave

functions and typical perturbations?

Cornelia Vogel (University of Tübingen) 22 / 23
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Thank you for your attention!
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Ideas of Proof (Lévy’s Lemma)

Next note that X
||X || is uniformly distributed on S(RD)

WLOG u(f ) = 0 and let f̃ (x) = ||x ||f (x/||x ||). For any δ > 0,

u {|f (ψ)| > ε} = P
{
|f̃ (x)| > ε||x ||

}
≤ P

{
|f̃ (x)| > δε

√
D
}

+ P
{
||x || < δ

√
D
}

≤ P
{
|f̃ (x)| > δε

√
D
}

+ P
{∣∣∣||x || − E||x ||

∣∣∣ > E||x || − δ
√
D
}
.

Now apply Lévy’s Lemma for Gaussian random variables to the Lipschitz

functions f̃ (x) and g(x) = ||x ||.
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Ideas of Proof (Canonical Typicality)

Let (U j
a)

d2
a−1

j=0 be an orthogonal operator basis for L(Ha) such that

tra(U j∗
a Uk

a ) = daδjk and write

ρψa =
1

da

∑
j

Cj(ρ
ψ
a )U j

a

and similarly for trb ρR , where Cj(ρ
ψ
a ) = tr(U j

aρ
ψ
a )

Observe that if |Cj(ρ
ψ
a )− Cj(trb ρR)| ≤ ε for all j ; then

‖ρψa − trb ρR‖2tr ≤ d2
a ε

2

This implies

uR
{
ψ ∈ S(HR) : ‖ρψa − trb ρR‖tr > εda

}
≤ uR

{
ψ ∈ S(HR) : ∃j :

∣∣Cj(ρ
ψ
a )− Cj(trb ρR)

∣∣ > ε
}

= uR
{
ψ ∈ S(HR) : ∃j :

∣∣tra(U j
aρ
ψ
a )− tra(U j

a trb ρR)
∣∣ > ε

}
Finally apply Lévy’s Lemma to f : S(HR)→ R, f (ψ) = tra(U j

aρ
ψ
a )
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Ideas of Proof (Lévy’s Lemma for GAP measures)

An application of Lévy’s Lemma for Gaussian random variables to

F ◦
√
ρ/2 : CD → R shows that for every ε > 0,

P {|F (Z )− EF (Z )| > ε} ≤ 2 exp

(
− 4ε2

π2η2‖ρ‖

)
.

Adjusting the proof of this lemma, one can show that, for every ε > 0,

GA(ρ) {ψ ∈ S(H) : |F (ψ)− GA(ρ)(F )| > ε} ≤ 4 exp

(
− 2ε2

π2η2‖ρ‖

)
.

First assume that D <∞. Wlog GAP(ρ)(f ) = 0 and for 0 < r < 1 define

f̃ : H → R by

f̃ (ψ) =

f
(

ψ
‖ψ‖

)
if ‖ψ‖ ≥ r ,

r−1‖ψ‖f
(

ψ
‖ψ‖

)
if ‖ψ‖ ≤ r .
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Ideas of Proof (Lévy’s Lemma for GAP measures)

We find

GAP(ρ) {|f (ψ)| > ε} ≤ GA(ρ)
{∣∣∣f̃ (ψ)− GA(ρ)(f̃ )

∣∣∣ > ε− |GA(ρ)(f̃ )|
}

+ GA(ρ) {‖ψ‖ < r} .

The first term can be bounded using Lévy’s Lemma for GA(ρ), the

second with the help of the Chernov bound: for a random variable Y with

moment generating function MY (t) = E(etY ) and a ∈ R,

P {Y ≤ a} ≤ inft<0 MY (t)e−ta

In the infinite-dimensional case consider

ρn :=
n−1∑
m=1

pm|m〉〈m|+

( ∞∑
m=n

pm

)
|n〉〈n| ,

note that ‖ρn − ρ‖tr → 0 and therefore GAP(ρn)⇒ GAP(ρ)
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Ideas of Proof (Lévy’s Lemma for GAP measures)

Portmanteaus’s Theorem states that a sequence (µn) of probability

measures on a measurable space (E ,B) converges weakly to a probability

measure µ on (E ,B) if and only if lim infn→∞ µn(O) ≥ µ(O) for all open

sets O ∈ B

Let ε′ > 0. With Aε := {ψ ∈ S(H) : |f (ψ)| > ε} it follows from

Portmanteau’s Theorem that

GAP(ρ)(Aε) ≤ lim inf
n→∞

GAP(ρn)(Aε) ≤ GAP(ρN)(Aε) + ε′

for N large enough. Note that ‖ρN‖ = ‖ρ‖ for N large enough and apply

the result from the finite-dimensional setting.

Generalized Canonical Typicality follows from Lévy’s Lemma for GAP

measures similarly as in the case of Canonical Typcality (with some extra

steps needed for covering infinite dimensions)
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measures similarly as in the case of Canonical Typcality (with some extra

steps needed for covering infinite dimensions)
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