
Correlation energy of mean-field Fermi gases

Marcello Porta

SISSA, Trieste

Joint works with: N. Benedikter, P. T. Nam, B. Schlein, R. Seiringer



Summary

Summary

• Introduction: many-body Fermi systems, mean-field regime.

• Effective theories for mean-field Fermi gases: Hartree-Fock theory.

• Main result: correlation energy for mean-field Fermi gases.

• Ideas of the proof: Fock space representation, Bogoliubov
transformations, collective bosonization.

• Norm approximation for many-body quantum dynamics (if time permits)

• Conclusions.
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Introduction

Many-body Hamiltonian

• We consider a system of N � 1 fermions, confined in Λ = T3.

State of the system: ψN ∈ L2
a(T3N ).

• Many-body Hamiltonian:

HN =

N∑
j=1

−∆j + λ

N∑
i<j

V (xi − xj) on L2(T3N ).

Mean field regime. The potential is N -indep., hence every particle
interacts with a macroscopic fraction of the others. One expects:

〈
ψN , λ

N∑
i<j

V (xi − xj)ψN
〉
∼ λN2 .

• We shall choose λ ≡ λ(N) so that kinetic and potential energy are of the
same order in N . How large is the kinetic energy?
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Introduction

The free Fermi gas

• For p ∈ Z3, let fp(x) be the eigenstates of −∆ on L2(T3) (plane waves):

fp(x) =
1

(2π)
3
2

eip·x , −∆fp = |p|2fp .

The functions (fp)p∈Z3 provide an orthonormal basis for L2(T3).

• An ONB for L2
a(T3N ) is provided by the Slater determinants,

constructed using the plane waves:

ψN = fp1 ∧ . . . ∧ fpN .

Notice that ψN ≡ 0, if pi = pj for i 6= j (Pauli principle).

• The kinetic energy of a Slater determinant is:

〈
ψN ,

N∑
i=1

−∆iψN
〉

=
∑

p∈{p1,...,pN}
|p|2 .
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Introduction

Fermi ball

• The ground state vector is obtained filling a ball Bµ in Z3:

k1

k2

Bµ

kF

• Black dots correspond to occupied momentum states in fp1 ∧ . . . ∧ fpN .

From now on, N ≡ N(kF ) so that Fermi ball is completely filled.
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Introduction

Excited states

• Excitations: holes in the Fermi sea.

k1

k2

Bµ

kF

k + p

k′ − p

Rmk: if V (xi − xj) 6= 0 product states are no longer eigenstates of HN .

Correlations among the N particles destroy the product structure.
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Introduction

Mean-field Hamiltonian

• Ground state energy of the noninteracting system, for N →∞:∑
p:|p|≤cN 1

3

|p|2 ' N 5
3

∫
|p|≤c

dp |p|2 = O(N
5
3 )

More generally, Lieb-Thirring kinetic energy inequality:〈
ψN ,

N∑
i=1

−∆iψN
〉
≥ CLT

∫
dx ρ

5
3

ψN
(x) , ∀ψN ∈ L2

a(R3N )

with ρψN (x) = N
∫
dx2 . . . dxN |ψN (x, x2, . . . , xN )|2.

• Mean-field Hamiltonian:

HN =

N∑
j=1

−ε2∆j +
1

N

N∑
i<j

V (xi − xj) with ε = N−1/3 .

We shall be interested in the ground state energy of the system:

EN := inf
ψN∈L2

a(T3N ): ‖ψN‖=1
〈ψN , HNψN 〉
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Hartree-Fock theory

Hartree-Fock theory and the correlation energy
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Hartree-Fock theory

Hartree-Fock theory

• In the mean-field regime, one expects every particle to be subject to an
“average field”, generated by all the others:

〈
ψN ,

N∑
i<j

V (xi − xj)ψN
〉
' 1

2

〈
ψN ,

N∑
i=1

(V ∗ ρψN )(xi)ψN
〉

Reasonable approximation, provided the correlations among the particles
are not too strong (law of large numbers).

• Slater determinants are the most uncorrelated fermionic states: the only
correlation among the particles is the one due to antisymmetry:

ψN = f1 ∧ · · · ∧ fN , 〈fi, fj〉 = δij .

• Hartree-Fock approximation. Minimize HN over uncorrelated states.
The Hartree-Fock ground state energy is defined as:

EHF
N := inf

ψN Slater
〈ψN , HNψN 〉

Marcello Porta (SISSA) Correlation energy November 29, 2021 6 / 24



Hartree-Fock theory

Hartree-Fock theory

• In the mean-field regime, one expects every particle to be subject to an
“average field”, generated by all the others:

〈
ψN ,

N∑
i<j

V (xi − xj)ψN
〉
' 1

2

〈
ψN ,

N∑
i=1

(V ∗ ρψN )(xi)ψN
〉

Reasonable approximation, provided the correlations among the particles
are not too strong (law of large numbers).

• Slater determinants are the most uncorrelated fermionic states: the only
correlation among the particles is the one due to antisymmetry:

ψN = f1 ∧ · · · ∧ fN , 〈fi, fj〉 = δij .

• Hartree-Fock approximation. Minimize HN over uncorrelated states.
The Hartree-Fock ground state energy is defined as:

EHF
N := inf

ψN Slater
〈ψN , HNψN 〉

Marcello Porta (SISSA) Correlation energy November 29, 2021 6 / 24



Hartree-Fock theory

Hartree-Fock energy functional

• Given a fermionic state ψN , the reduced k-particle density matrix is:

γ
(k)
N :=

(
N

k

)
trk+1→N |ψN 〉〈ψN | .

• For a Slater determinant, f1 ∧ . . . ∧ fN , fi orthonormal, the reduced
1PDM takes a particularly simple form:

γ
(1)
N =

N∑
i=1

|fi〉〈fi| =: ωN .

Notice that ωN = ω2
N = ω∗N , trωN = N . Slater dets are an example of

quasi-free state: all kPDM can be obtained from ωN via the Wick rule,

γ
(k)
N (x1, . . . , xk; y1, . . . , yk) =

1

k!

∑
π

σπ

k∏
j=1

ω(xj ; yπ(j)) .
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Notice that ωN = ω2
N = ω∗N , trωN = N . Slater dets are an example of

quasi-free state: all kPDM can be obtained from ωN via the Wick rule.

• Energy of a Slater determinant: Hartree-Fock energy functional,

EHF
N (ωN ) = − tr ε2∆ωN +

1

2N

∫
dxdy V (x− y)[ρω(x)ρω(y)− |ωN (x; y)|2]

with ρω(x) = ωN (x;x).
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Hartree-Fock theory

Validity of Hartree-Fock theory

• Trivially, EN ≤ EHF
N . Lower bound?

• For Coulomb systems, the first proof of validity of the HF approximation
has been given by Bach ’92 (then Graf-Solovej ’94):

EN ≥ EHF
N − CN 1

3−δ for some δ > 0

The result allows to resolve the full Hartree-Fock energy, since the size of
the exchange term, the smallest term in the functional, is O(N

1
3 ).

• Related (and earlier) results: comparison with Thomas-Fermi theory. In
the TF approximation, the energy of a fermionic state is:

ETF
N (ρ) =

3

5
(6π2)

2
3 ε2

∫
dx ρ(x)

5
3 +

1

2N

∫
V (x− y)ρ(x)ρ(y)

It arises as a semiclassical approximation of quantum mechanics.
[Lieb-Simon ’77; ... ; Fournais-Lewin-Solovej ’15.]

The TF ground state energy is the leading order of the HF energy.
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Hartree-Fock theory

The correlation energy

• Main limitation: HF and TF theories completely neglect the effect of
correlations (the true ground state is not a Slater determinant!).

• In our confined setting the HF ground state is the free Fermi gas:

EHF
N = EHF

N (ωN ) , ωN =
∑
p∈Bµ

|fp〉〈fp| .

Reason: spectral gap of the Laplacian. In the infinite volume limit,
translation invariance might be broken. [Gontier-Hainzl-Lewin ’18]

• We define the correlation energy as:

EC
N := EN − EHF

N .

Attempts for the computation of EC
N have been made since the early

days of condensed matter physics: Wigner ’34, Heisenberg ’47, Macke
’50, Bohm-Pines ’53, Sawada ’57, Gell-Mann and Brueckner ’57...

• Bohm-Pines: Random-phase approximation. Infinite resummation of a
suitable class of Feynman graphs.
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Main result

Correlation energy of mean-field Fermi gases
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Main result

Correlation energy of mean-field Fermi gases

Theorem (BNPSS CMP ’20, Inventiones ’21; BPSS arXiv 2021)

Let V̂ (k) ≥ 0, |k|V̂ (k) ∈ `1(Z3). Then, as N →∞:

EC
N = εκ

∑
k∈Z3

|k|
(
1

π

∫ ∞
0

log
[
1 + 2πκV̂ (k)

(
1− λ arctan

(
λ−1

))]
dλ−

π

2
κV̂ (k)

)
+ o(ε)

where κ = (3/4π)
1
3 , ε = N−

1
3 .

Remarks.

• The result agrees with the random-phase approximation of Bohm-Pines.

• Previous work, at second order in V : Hainzl, P., Rexze ’19.

Correlation energy at all orders, for small V : BNPSS ’20-’21

• Result based on collective bosonization, for low energy excitation.

Related approach: Christiansen, Hainzl, Nam ’21.

• As an upper bound, the theorem extends to |k|V̂ (k)2 ∈ `1(Z3).
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Sketch of the proof

Fock space formulation

• Starting point: formulation of the problem in the fermionic Fock space,

F =
⊕
n∈N

L2
a(T3N ) = C⊕ L2(T)⊕ L2

a(T2)⊕ . . . .

Vacuum vector: Ω = (1, 0, 0, . . . , 0, . . .).

• Useful to introduce fermionic creation and annihilation operators:

ak : F (n) → F (n−1) , a∗k : F (n) → F (n+1)

Explicitly, for any ψ ∈ F , and for any k ∈ Z:

(akψ)
(n)(x1, . . . , xn) =

√
n+ 1

∫
T
dx fk(x)ψ

(n+1)(x, x1, . . . , xn)

(a∗kψ)
(n)(x1, . . . , xn) =

1
√
n

n∑
j=1

(−1)jfk(xj)ψ(n−1)(x1, . . . , xj−1, xj+1, . . . , xn)

(akΩ = 0). Canonical anticommutation relations:

{ak, ak′} = {a∗k, a∗k′} = 0 , {a∗k, ak′} = δk,k′ .
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Sketch of the proof

Fock space Hamiltonian

• Creation/annihilation operators can be used to lift operators from
L2
a(T3n) to the Fock space. Simplest example: number operator,

N =
⊕
n∈N

n1L2
a(T3n) =

∑
k∈Z3

a∗kak .

• Fock space Hamiltonian: HN =
⊕

nH
(n)
N , with H

(n)
N on L2

a(T3n).
Equivalently,

HN =
∑
k

ε2|k|2a∗kak +
1

2N

∑
p,k,k′

V̂ (p)a∗k+pa
∗
k′−pak′ak

• The ground state energy EN of HN ≡ H(N)
N on L2

a(T3N ) is:

EN = inf
ψ∈F(N)

〈ψ,HNψ〉F
〈ψ,ψ〉F

,

with 〈ψ,ϕ〉F =
∑
n〈ψ(n), ϕ(n)〉L2(T3n).
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Sketch of the proof

Bogoliubov transformations

• It turns out that F can be built acting repeatedly with the {a∗k}
operators on the vacuum vector Ω = (1, 0, . . . , 0, . . .):

(a∗k1 · · · a∗knΩ)(n)(x1, . . . , xn) =
1√
n!

(
detfki(xj)

)
1≤i,j≤n

and Slater dets form a basis of L2
a(T3n). Each a∗k adds a “quantum” of

kinetic energy ε2|k|2 on the state (the energy of Ω is zero).

• Bogoliubov transformation: convenient rotation of the vacuum vector.
There exists a unitary operator R : F → F , such that:

R∗a∗kR =

{
a∗k k /∈ Bµ (creates a particle)
ak k ∈ Bµ (creates a hole)

, RΩ =
∧
k∈Bµ

fk .

• Advantage: the new vacuum RΩ is the Hartree-Fock ground state:

〈RΩ,HNRΩ〉 = EHF
N .
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Sketch of the proof

The correlation Hamiltonian

• It is useful to compute 〈Rξ,HNRξ〉 on general states ξ ∈ F .

We have, highlighting only the most relevant terms:

R∗HNR = EHF
N + H0 + Q + Q∗ + E ,

where: (µ = ε2k2F )

H0 =
∑
k

e(k)a∗kak , e(k) = |ε2|k|2 − µ| (relative kin. energy)

Q =
1

N

∑
k,k′∈Bµ

k+p,k′−p/∈Bµ

V̂ (p)akak+pak′ak′−p (excitations around ∂Bµ)

The error term E is small on states ξ with few particles.

• HC
N := H0 + Q + Q∗ + E is the correlation Hamiltonian.

The correlation energy can be rewritten as:

EC
N = inf

ξ∈R∗F(N)
〈ξ,HC

Nξ〉 .
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Sketch of the proof

Global pseudo-bosons

• The Bogoliubov-transformed interaction Q can be rewritten as:

Q =
1

N

∑
p

V̂ (p)bpb−p , bp =
∑
k∈Bµ
k+p/∈Bµ

ak+pak .

The bp operators implement particle-hole excitations.

They behave as
bosons, if evaluated on states with “few” particles:

[bp, bq] = [b∗p, b
∗
q ] = 0 , 〈ξ, [bp, b∗q ]ξ〉 ' δp,qn2p + 〈ξ,N ξ〉

with (see figure):

(i) n2p = number of lattice points
in the red region Ip,

(ii) kF = O(N1/3)⇒ n2p ∼ |p|N2/3.

Approximate CCR if 〈ξ,N ξ〉 � N2/3. BµBµ − p

kF

Ip
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Sketch of the proof

Bosonization of the kinetic energy

• If HC
N was quadratic in bp, we could compute EC

N explicitly (via a
bosonic Bogoliubov transformation).

• Problem: H0 not quadratic in bp! Action on a state with one “boson”:

H0b
∗
pΩ = [H0, b

∗
p]Ω =

∑
k∈Ip

ε2|p · k| a∗k+pa∗kΩ .

If k · p was replaced by a constant, we would get an eigenstate of H0.

• This is precisely what happens in the Luttinger model, where the
dispersion relation is linear. There:

(p · k)→ ±|p|kF , ±: chirality of the fermions.

Mattis-Lieb ’65: exact solution of the Luttinger model in terms of the
excitations of a noninteracting Bose gas. First instance of bosonization.
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Sketch of the proof

Local pseudo-bosons

• Idea: localize particle-hole excitations in patches on the Fermi surface,
and there linearize. [Haldane-Luther 90s; Benfatto-Gallavotti 90s]

(i) cp,α = (np,α)−1
∑
k∈Ip∩Pα ak+pak

#(Pα) = M � 1, n2p,α ' |p · ω̂α|N
2/3

M

(ii) Approximate CCR:

[cp,α, cq,β ] = 0 , 〈ξ, [cq,β , c∗p,α]ξ〉 ' δα,β
(
δp,q +

M

N2/3
〈ξ,N ξ〉

)
Almost-bosonic relations if 〈ξ,N ξ〉 �M−1N2/3.

(iii) On states with “few bosons” ξ =
∏
i c
∗
αi,piΩ, ωα = center(Pα):

H0ξ '
(∑
p,α

ε|p · ω̂α|c∗p,αcp,α
)
ξ ≡ DBξ (DB bosonic kin. en.)
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Sketch of the proof

Bosonization of the correlation Hamiltonian

• On states with few bosonic excitations, HC
N acts similarly to:

HB
N =

∑
p,α

ε|p · ω̂α|c∗p,αcp,α

+
1

2N

∑
p,α,β

V̂ (p)[nα,pnβ,pc
∗
p,αcp,β + nα,pnβ,−pc

∗
p,αc

∗
−p,β + h.c.]

• If the theory was truly bosonic, the ground state would have the form:

ξ = TΩ , T = exp
{ ∑
α,β,p

Kα,β(p)cp,αc−p,β − h.c.
}

for a suitable Bogoliubov kernel K. We would have:

T ∗HB
NT = ERPA

N + Hexc

with ERPA
N the expression in our theorem and Hexc ≥ 0 (excitations).

• Take ξ = TΩ as a fermionic trial state. We have 〈ξ,N kξ〉 ≤ Ck.

Approximate bosonization is justified, and we get EC
N ≤ ERPA

N + o(ε).
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Sketch of the proof

Lower bound: a priori estimates

• Let V continuous, V̂ (k) ≥ 0. The following inequality holds:

N∑
i<j

V (xi − xj) ≥
N2

2
V̂ (0)− N

2
V (0) .

The first term is equal to the direct energy in EHF
N . The second term is a

semiclassical approximation for the exchange energy:

− 1

2N

∫
dxdy V (x− y)|ωN (x; y)|2 = −V (0)

2
+O(ε) .

• Let ψ ∈ F (N) such that E(ψ) ≤ EHF
N .

Let ξ = R∗ψ. Using that 〈ψ,Kψ〉 = − tr ε2∆ωN + 〈ξ,H0ξ〉, we easily get:

EHF
N ≥ EHF

N + 〈ξ,H0ξ〉 − Cε .

• A priori estimates: 〈ξ,H0ξ〉 ≤ Cε, which also implies 〈ξ,N ξ〉 ≤ CN1/3.
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Sketch of the proof

Non-bosonizable terms

• The a priori estimate allow to use approximate bosonization.

• However, many terms in the correlation Hamiltonian are not
bosonizable! Example:

E1 =
1

N

∑
p

V̂ (p)D∗pDp , Dp =
∑

k: k+p,k/∈Bµ
a∗k+pak −

∑
k: k−p,k∈Bµ

a∗k−pak

• 1st try. 〈ξ, E1ξ〉 ≤ CN−1〈ξ,N 2ξ〉 ≤ Cε. Same order as EC
N , not good.

Better. If all modes in E1 were at distance ≥ N− 1
3+δ from ∂Bµ,

〈ξ, E1ξ〉 ≤
C

N
〈ξ,N 2

1
3−δ

ξ〉 , N 1
3−δ :=

∑
dist(k,Bµ)≥N−

1
3
+δ

a∗kak

Using that N 1
3−δ ≤ CN

2
3−δH0, we would then get 〈ξ, E1ξ〉 = o(ε).

• Gapless modes. Their number is much smaller than N2/3, thanks to
refined lattice counting arguments (which I will not discuss).
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Sketch of the proof

Bosonization of the kinetic energy

• In order to compare H0 with DB, we write:

〈ξ,H0ξ〉 = 〈ξ,DBξ〉+ 〈ξ, (H0 − DB)ξ〉

The first term contributes to the correlation energy. The second term
almost-commutes with the cp,α operators. Hence:

〈ξ, (H0 − DB)ξ〉 ' 〈T ∗ξ, (H0 − DB)T ∗ξ〉 .

For the upper bound, T ∗ξ = Ω! Not true for the lower bound...

• Lower bound. Recall that, by approximate bosonization:

〈ξ, (DB + Q)ξ〉 ' ERPA
N + 〈T ∗ξ,HexcT ∗ξ〉

The excitation Hamiltonian Hexc is positive. Up to a new Bogoliubov
transformation Z, it can be used to control −DB:

Z∗HexcZ ≥ DB (exact if the operators were truly bosonic.)
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Norm approximation

Norm approximation of quantum dynamics
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Norm approximation

Excited states?

• The previous analysis gives a rather precise understanding of the
low-energy states of our mean-field problem.

• Natural guess: describe excited states in terms of

Ψ(ϕ1; . . . ;ϕm) := RTc∗(ϕ1) · · · c∗(ϕm)Ω , with ϕi ≡ ϕi(p, α)

for ϕi eigenstates of the bosonic excitation Hamiltonian.

• Our bounds are not good enough to resolve the excitation spectrum.
However, one can understand Ψ(·) as approximate eigenstates, by
proving that they are almost invariant under quantum dynamics.

• More precisely, one would like to argue that, for long times:

e−iHN t/εΨ(ϕ1; . . . ;ϕm) ' e−i(t/ε)(EHF
N +ERPA

N )Ψ(ϕ1,t; . . . ;ϕm,t)

where ϕi,t = e−iH
exc
B t/εϕi.
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e−iHN t/εΨ(ϕ1; . . . ;ϕm) ' e−i(t/ε)(EHF
N +ERPA

N )Ψ(ϕ1,t; . . . ;ϕm,t)

where ϕi,t = e−iH
exc
B t/εϕi.
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Norm approximation

Norm approximation for quantum dynamics

Theorem (BNPSS, Annales Henri Poincaré 2021)

Let V̂ (k) be compactly supported and nonnegative. Then, for any m ∈ N and
for any t ∈ R:∥∥∥e−iHN t/εΨ(ϕ1; . . . ;ϕm)− e−i(t/ε)(EHF

N +ERPA
N )Ψ(ϕ1,t; . . . ;ϕm,t)

∥∥∥ ≤ Cmε 1
15 |t| .

Remarks.

• The macroscopic time scale is t = O(1). In fact, in our semiclassical
scaling, the typical velocity of the particles is O(1).

• The vector Ψ(·) is an N -particle state, and convergence holds in the
L2(T3N )-norm.

• First result about norm-approximation of many-body quantum dynamics
in terms of an effective dynamics. Previous convergence results, at the
level of density matrices:

Benedikter, P., Schlein ’14 ; + Jaksic, Saffirio ’16; Saffirio et al. ’21.
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Conclusions

Conclusions

• We rigorously computed the leading order in N of the correlation energy
for fermionic systems in the mean-field regime, nonperturbatively.

• Proof based on rigorous bosonization. It allows to justify the Random
Phase Approximation of Bohm-Pines, for the ground state energy.

• The method can be used to prove a norm approximation for the
many-body evolution of a class of states, in terms of a simpler effective
dynamics for the excitations around the Fermi surface.

• Similar ideas (patch-free) work in the completely different setting of
dilute Fermi gases. They allow to understand the ground state energy as
the energy of a quasi-free Bose gas [Falconi, Giacomelli, Hainzl, P. ’21.]

• Extension to Coulomb interactions?

• High density/thermodynamic limit?

• Superconducting instability?
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