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Summary

Summary

e Introduction: many-body Fermi systems, mean-field regime.
e Effective theories for mean-field Fermi gases: Hartree-Fock theory.
e Main result: correlation energy for mean-field Fermi gases.

e Ideas of the proof: Fock space representation, Bogoliubov
transformations, collective bosonization.

e Norm approximation for many-body quantum dynamics (if time permits)

e Conclusions.
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Many-body Hamiltonian

o We consider a system of NV >> 1 fermions, confined in A = T?.
State of the system: v € L2(T3V).

e Many-body Hamiltonian:
HNfZ A +>\ZV i —x;)  on L*(TN).
1<j

Mean field regime. The potential is N-indep., hence every particle
interacts with a macroscopic fraction of the others. One expects:

N
<¢N7)\ZV(£Z —.’E])’(/}N> ~ )\N2 .
i<j

e We shall choose A = A(V) so that kinetic and potential energy are of the
same order in N. How large is the kinetic energy?
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Introduction

The free Fermi gas

o For p € Z3, let f,(z) be the eigenstates of —A on L?*(T?) (plane waves):

1
(2m)’}

fp(x) = P ) *Afp = |p|2fp .

The functions (f,),ez: provide an orthonormal basis for L?(T?).

e An ONB for L2(T3") is provided by the Slater determinants,
constructed using the plane waves:

UN = fou Ao A fo -

Notice that ¥ =0, if p; = p; for i # j (Pauli principle).
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Introduction

The free Fermi gas

o For p € Z3, let f,(z) be the eigenstates of —A on L?*(T?) (plane waves):

1
(2m)’}

fp(x) = P ) *Afp = |p|2fp .

The functions (f,),ez: provide an orthonormal basis for L?(T?).

e An ONB for L2(T3") is provided by the Slater determinants,
constructed using the plane waves:

UN = fou Ao A fo -

Notice that ¥ =0, if p; = p; for i # j (Pauli principle).

e The kinetic energy of a Slater determinant is:

N
(Y, Z —Aiypn) = Z p|* -
=1

pE{pP1,..,PN}
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Introduction

Fermi ball

o The ground state vector is obtained filling a ball B, in Z3:

)

kr

e Black dots correspond to occupied momentum states in fp, A... A fpy.

From now on, N = N (k) so that Fermi ball is completely filled.
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Excited states

e Excitations: holes in the Fermi sea.
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Excited states

e Excitations: holes in the Fermi sea.

kp

Rmk: if V(x; — x;) # 0 product states are no longer eigenstates of Hy.

Correlations among the N particles destroy the product structure.
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Mean-field Hamiltonian

e Ground state energy of the noninteracting system, for N — oo:

S 2~ N / dplp® = O(N'T)
p:lplécN% plse

More generally, Lieb-Thirring kinetic energy inequality:
S 5 2 (3N
(b, Y —Aihy) > CLT/dx pi (x), Vi € LAR)
i=1

with pyy (2) = N [das...den YN (2, 22, ..., 2N8)[%
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Mean-field Hamiltonian

e Ground state energy of the noninteracting system, for N — oo:

S 2~ N / dplp® = O(N'T)
[p|<e

1
p:|p|<eN3

More generally, Lieb-Thirring kinetic energy inequality:
S 5 2 (3N
(b, Y —Aihy) > CLT/dx pi (x), Vi € LAR)
i=1

with pyy (2) = N [das...den YN (2, 22, ..., 2N8)[%

e Mean-field Hamiltonian'

HN_Z—CQA +—Zv xi—x;)  withe=N"1/3,
j=1 1<j

We shall be interested in the ground state energy of the system:
En = inf (YN, Hnipn)

YN EL(T3N): [ ]l=1
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Hartree-Fock theory

Hartree-Fock theory and the correlation energy

Marcello Porta (SISSA) Correlation energy November 29, 2021 5/24



Hartree-Fock theory

Hartree-Fock theory

e In the mean-field regime, one expects every particle to be subject to an
“average field”, generated by all the others:

N

(0, 32V s ) = S0 SOV 5 pun )

1<j i=1

Reasonable approximation, provided the correlations among the particles
are not too strong (law of large numbers).
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Hartree-Fock theory

e In the mean-field regime, one expects every particle to be subject to an
“average field”, generated by all the others:

N

(0, 32V s ) = S0 SOV 5 pun )

1<j i=1

Reasonable approximation, provided the correlations among the particles
are not too strong (law of large numbers).

e Slater determinants are the most uncorrelated fermionic states: the only
correlation among the particles is the one due to antisymmetry:

wN:fl/\"‘/\va <f17f]>:611

e Hartree-Fock approximation. Minimize Hy over uncorrelated states.
The Hartree-Fock ground state energy is defined as:

HF ,__ :
EN T leglfz;ter<wN7 HNwN>
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Hartree-Fock theory

Hartree-Fock energy functional

e Given a fermionic state 1y, the reduced k-particle density matrix is:

N
1\ = (k) trep 1N [UN) (YN ] -
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Hartree-Fock theory

Hartree-Fock energy functional

e Given a fermionic state 1y, the reduced k-particle density matrix is:

N
1\ = (k) trep 1N [UN) (YN ] -

e For a Slater determinant, fi A ... A fn, f; orthonormal, the reduced
1PDM takes a particularly simple form:

N
W& =SR] = o
=1

Notice that wy = w% = w}, trwy = N.
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Hartree-Fock theory

Hartree-Fock energy functional

e Given a fermionic state 1y, the reduced k-particle density matrix is:

N
1\ = (k) trep 1N [UN) (YN ] -

e For a Slater determinant, fi A ... A fn, f; orthonormal, the reduced
1PDM takes a particularly simple form:

N
W& =SR] = o
=1

Notice that wy = wJQV =wy, trwy = N. Slater dets are an example of
quasi-free state: all kPDM can be obtained from wy via the Wick rule,

k 1
W@ ey ) = HZUW [T w@ssv-i)) -
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Hartree-Fock theory

Hartree-Fock energy functional

e Given a fermionic state ¥y, the reduced k-particle density matrix is:
k N
W = (k) 1N [UN) (Un] -

e For a Slater determinant, fi A... A fn, f; orthonormal, the reduced
1PDM takes a particularly simple form:

N
A& =S = o
=1

Notice that wy = wjz\, = wy, trwy = N. Slater dets are an example of
quasi-free state: all kPDM can be obtained from wy via the Wick rule.

e Energy of a Slater determinant: Hartree-Fock energy functional,

1
EN"(wn) = —tre*Awy + o [ dedy V(z = y)lpo(@)pu(y) = lon (;9)]]

with p,(z) = wy(z; ).
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Hartree-Fock theory

Validity of Hartree-Fock theory

e Trivially, Ey < EXF. Lower bound?
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Hartree-Fock theory

Validity of Hartree-Fock theory

e Trivially, Ey < EXF. Lower bound?

e For Coulomb systems, the first proof of validity of the HF approximation
has been given by Bach 92 (then Graf-Solovej '94):

ENZEJIE,F—CN%_‘S for some 6 > 0

The result allows to resolve the full Hartree-Fock energy, since the size of
1
the exchange term, the smallest term in the functional, is O(N3).
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Hartree-Fock theory

Validity of Hartree-Fock theory

e Trivially, Ey < EXF. Lower bound?

e For Coulomb systems, the first proof of validity of the HF approximation
has been given by Bach 92 (then Graf-Solovej '94):

ENZEJIE,F—CN%_‘S for some 6 > 0

The result allows to resolve the full Hartree-Fock energy, since the size of
1
the exchange term, the smallest term in the functional, is O(N3).

e Related (and earlier) results: comparison with Thomas-Fermi theory. In
the TF approximation, the energy of a fermionic state is:

X () = 3 (on*)3e2 [ dupla)d + 55 [ Vie = win(a)oty)

It arises as a semiclassical approximation of quantum mechanics.
[Lieb-Simon ’77; ... ; Fournais-Lewin-Solovej '15.]

The TF ground state energy is the leading order of the HF energy.
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Hartree-Fock theory

The correlation energy

e Main limitation: HF and TF theories completely neglect the effect of
correlations (the true ground state is not a Slater determinant!).

e In our confined setting the HF ground state is the free Fermi gas:
EIIEZF = 5J%F(WN) ) WN = Z | fp) (fol -
pEB,

Reason: spectral gap of the Laplacian. In the infinite volume limit,
translation invariance might be broken. [Gontier-Hainzl-Lewin ’18]
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Hartree-Fock theory

The correlation energy

e Main limitation: HF and TF theories completely neglect the effect of
correlations (the true ground state is not a Slater determinant!).

e In our confined setting the HF ground state is the free Fermi gas:
EIIEZF = 5J%F(WN) ) WN = Z | fp) (fol -
pEB,

Reason: spectral gap of the Laplacian. In the infinite volume limit,

translation invariance might be broken. [Gontier-Hainzl-Lewin ’18]
e We define the correlation energy as:

E$ := Ey — EYIF |
Attempts for the computation of E]% have been made since the early

days of condensed matter physics: Wigner 34, Heisenberg ’47, Macke
’50, Bohm-Pines ’53, Sawada 57, Gell-Mann and Brueckner '57...
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Hartree-Fock theory

The correlation energy

e Main limitation: HF and TF theories completely neglect the effect of
correlations (the true ground state is not a Slater determinant!).

e In our confined setting the HF ground state is the free Fermi gas:
EIIEZF = 5J%F(WN) ) WN = Z | fp) (fol -
pEB,

Reason: spectral gap of the Laplacian. In the infinite volume limit,

translation invariance might be broken. [Gontier-Hainzl-Lewin ’18]
e We define the correlation energy as:

E$ := Ey — EYIF |
Attempts for the computation of E]% have been made since the early

days of condensed matter physics: Wigner 34, Heisenberg ’47, Macke
’50, Bohm-Pines ’53, Sawada 57, Gell-Mann and Brueckner '57...

e Bohm-Pines: Random-phase approximation. Infinite resummation of a
suitable class of Feynman graphs.
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Main result

Correlation energy of mean-field Fermi gases
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Main result

Correlation energy of mean-field Fermi gases

Theorem (BNPSS CMP ’20, Inventiones ’21; BPSS arXiv 2021)

Let V(k) >0, |k|V (k) € £2(Z3). Then, as N — oo:

E§ =er k§3|k| (% /OOO log [1 + 27V (k) (1 — Xarctan (/\*1))] dX — gnf/(k)) + o(e)

o=

where Kk = (3/4#)%, e=N"5s.

Marcello Porta ( Correlation energy November 29, 2021 10 /24



Main result

Correlation energy of mean-field Fermi gases

Theorem (BNPSS CMP ’20, Inventiones ’21; BPSS arXiv 2021)

Let V(k) >0, |k|V (k) € £2(Z3). Then, as N — oo:

E§ =er Z k| ( /OOO log [1 + 27k V (k) (1 — Aarctan (A 1))] dx — an k)) + o(e)

kez3

o=

where Kk = (3/4#)%, e=N~"
Remarks.

e The result agrees with the random-phase approximation of Bohm-Pines.

e Previous work, at second order in V: Hainzl, P., Rexze ’19.
Correlation energy at all orders, for small V: BNPSS ’20-'21

e Result based on collective bosonization, for low energy excitation.
Related approach: Christiansen, Hainzl, Nam ’21

e As an upper bound, the theorem extends to |k|V (k)? € £'(Z3).
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Sketch of the proof
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Sketch of the proof

Fock space formulation

e Starting point: formulation of the problem in the fermionic Fock space,

F=@PLATN)=CoL*(T)® LA(T*) ... .
neN

Vacuum vector: Q = (1,0,0,...,0,...).

e Useful to introduce fermionic creation and annihilation operators:
ap : FW — Foob) af : FW — FotD
Explicitly, for any ¢ € F, and for any k € Z:

(apy) ™M (@1, .. zn) = vn+1/dxfk(x)lﬁ(”“)(a:,wl,---wn)
T
(aj)™ (21, an) = %Z(_l)jfk(wj)w(n_l)(l'ly--~:93j—1:93j+17~~7$n)
j=1

(ar2 = 0). Canonical anticommutation relations:

{ag,ap} = {aj,aj,} =0, {ag,ap} = ppr -
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Sketch of the proof

Fock space Hamiltonian

e Creation/annihilation operators can be used to lift operators from
L2(T3") to the Fock space. Simplest example: number operator,

NZ @nng(Tan) = Z aZak .

neN kez3
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Sketch of the proof

Fock space Hamiltonian

e Creation/annihilation operators can be used to lift operators from
L2(T3") to the Fock space. Simplest example: number operator,

NZ @nng(Tan) = Z aZak .

neN kez3

e Fock space Hamiltonian: Hy = @, H](\?), with H](\?) on L2(T3").

Equivalently,
HN = E €2|]€|2a ap + — E V a ag ak/ak
k N k+p k' —
k p,k,k’
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Sketch of the proof

Fock space Hamiltonian

e Creation/annihilation operators can be used to lift operators from
L2(T3") to the Fock space. Simplest example: number operator,

NZ @nng(Tan) = Z aZak .

neN kez3

e Fock space Hamiltonian: Hy = @, H](\?), with H](\?) on L2(T3").
Equivalently,

HN = E €2|k|2akak + — 2N E V a’k—‘,—pak/ A Qg
k p,k,k’

e The ground state energy Ey of Hy = HJ(VN) on L2(T3N) is:

i (O, Hn) 7
PYeFN) <¢7¢>]: ’

with <1/)7 90).7: = Zn<,¢)(n), So(n)>L2(’]I‘3")~
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Sketch of the proof

Bogoliubov transformations

e It turns out that F can be built acting repeatedly with the {a};}
operators on the vacuum vector Q = (1,0,...,0,...):

%(detﬁ% (x]))

and Slater dets form a basis of L2(T3"). Each a} adds a “quantum” of
kinetic energy £2|k|? on the state (the energy of € is zero).

*gr Q)™ =
(akl Ak, ) (331, 7‘7571) 1<ij<n
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Sketch of the proof

Bogoliubov transformations

e It turns out that F can be built acting repeatedly with the {a};}
operators on the vacuum vector Q = (1,0,...,0,...):

%(detﬁ% (x]))

and Slater dets form a basis of L2(T3"). Each a} adds a “quantum” of
kinetic energy £2|k|? on the state (the energy of € is zero).

*gr Q)™ =
(akl Ak, ) (331, 7‘7571) 1<ij<n

e Bogoliubov transformation: convenient rotation of the vacuum vector.
There exists a unitary operator R : F — F, such that:

ay, k¢B, (creates a particle)
ar,  keB, (creates a hole)

R*apR = {

. R= A Ji.

kEB,
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Sketch of the proof

Bogoliubov transformations

e It turns out that F can be built acting repeatedly with the {a};}
operators on the vacuum vector Q = (1,0,...,0,...):

%(detﬁ% (x]))

and Slater dets form a basis of L2(T3"). Each a} adds a “quantum” of
kinetic energy £2|k|? on the state (the energy of € is zero).

*gr Q)™ =
(akl Ak, ) (331, 7‘7571) 1<ij<n

e Bogoliubov transformation: convenient rotation of the vacuum vector.
There exists a unitary operator R : F — F, such that:

ay, k¢B, (creates a particle)

Rrajk = { ar,  keB, (creates a hole)

. R= A Ji.

kEB,

e Advantage: the new vacuum RS2 is the Hartree-Fock ground state:

(RO, HNRQ) = EXF
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Sketch of the proof

The correlation Hamiltonian

e It is useful to compute (R, HyRE) on general states € € F.
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Sketch of the proof

The correlation Hamiltonian

e It is useful to compute (R, HyRE) on general states € € F.
We have, highlighting only the most relevant terms:

R*HyR = ERF+Ho+Q+Q"+E,

where: (n=e2%k%)
Hy = Ze(k)a}iak , e(k) = |%|k|* — p (relative kin. energy)

k

1 ~ L.

Q = N Z V(p)akaktpai ar —p (excitations around 0B,,)
k' €B,
k’+17fk/*p¢6u

The error term E is small on states £ with few particles.
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Sketch of the proof

The correlation Hamiltonian

e It is useful to compute (R, HyRE) on general states € € F.
We have, highlighting only the most relevant terms:

R*HyR = ERF+Ho+Q+Q"+E,

where: (n=e2%k%)
Hy = Ze(k)a}iak , e(k) = |%|k|* — p (relative kin. energy)

k

1 ~ L.

Q = N Z V(p)akaktpai ar —p (excitations around 0B,,)
k' €B,
k’+17fk/*p¢6u

The error term E is small on states £ with few particles.

° ’H% := Hy + Q + Q* + E is the correlation Hamiltonian.
The correlation energy can be rewritten as:

C _ : C
Ey —&Fgl;m@,"rljv ) -

Marcello Porta S/ Correlation energy November 29, 2021 14 /24



Sketch of the proof

Global pseudo-bosons

e The Bogoliubov-transformed interaction Q can be rewritten as:

1 e
Q= STV@bb—p . b= > arspar -
p kEB,,

k+p¢B,

The b, operators implement particle-hole excitations.
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Sketch of the proof

Global pseudo-bosons

e The Bogoliubov-transformed interaction Q can be rewritten as:

1 e
Q= STV@bb—p . b= > arspar -
p kEB,,

k+p¢B,

The b, operators implement particle-hole excitations. They behave as
bosons, if evaluated on states with “few” particles:

[bpv bq] = [b;, b;] =0, <§’ [b:Dv b;]§> = ;D,qn;% + <€7N£>
with (see figure):

(i) n2 = number of lattice points
in the red region I,,

(ii) kp = O(NY3) = n2 ~ [p|N?/3.

Approximate CCR if (&, N'¢) < N?/3.

B, —p
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Sketch of the proof

Bosonization of the kinetic energy

o If ’H% was quadratic in by, we could compute E](\J, explicitly (via a
bosonic Bogoliubov transformation).
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Sketch of the proof

Bosonization of the kinetic energy

o If ’H% was quadratic in by, we could compute E](\j, explicitly (via a
bosonic Bogoliubov transformation).

e Problem: Hy not quadratic in b,! Action on a state with one “boson”:

HobjQ = [Ho, 03] = > &2|p- k| aj,,a4Q .
ke€l,

If k- p was replaced by a constant, we would get an eigenstate of Hy.
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Sketch of the proof

Bosonization of the kinetic energy

o If ’H% was quadratic in by, we could compute E](\j, explicitly (via a
bosonic Bogoliubov transformation).

e Problem: Hy not quadratic in b,! Action on a state with one “boson”:
HobjQ = [Ho, 03] = > &2|p- k| aj,,a4Q .
ke,

If k- p was replaced by a constant, we would get an eigenstate of Hy.

e This is precisely what happens in the Luttinger model, where the
dispersion relation is linear. There:

(p- k) — x|plkr , +: chirality of the fermions.

Mattis-Lieb '65: exact solution of the Luttinger model in terms of the
excitations of a noninteracting Bose gas. First instance of bosonization.
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Sketch of the proof

Local pseudo-bosons

e Idea: localize particle-hole excitations in patches on the Fermi surface,
and there linearize.  [Haldane-Luther 90s; Benfatto-Gallavotti 90s]
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Sketch of the proof

Local pseudo-bosons

e Idea: localize particle-hole excitations in patches on the Fermi surface,
and there linearize.  [Haldane-Luther 90s; Benfatto-Gallavotti 90s]

(i) cpa = (p,a) ™" Xper,np, Uh+pan
H(P)=M>1, n2,~p- G207

(ii) Approximate CCR:

eprasl =0, {6 [easrchale) = b (Fpa + 1rarg (6 NE)
Almost-bosonic relations if (£, N¢) < M~ N?/3,

(iii) On states with “few bosons” £ =], ¢l  Q, ws = center(Py):

[e2%y 23

Hp& ~ (Ze|p . d}a\c;acp@)ﬁ = D¢ (Dp bosonic kin. en.)
p,@
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Sketch of the proof

Bosonization of the correlation Hamiltonian

o On states with few bosonic excitations, H$; acts similarly to:

My = D elp-alc) atpa
b,
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Sketch of the proof

Bosonization of the correlation Hamiltonian

o On states with few bosonic excitations, H$; acts similarly to:

Hy = Z€|p’d’a|c;,acpyoé
P

e If the theory was truly bosonic, the ground state would have the form:

E=T9, T = exp { Z Ko p(p)epac—pps — h.c.}
a,B,p

for a suitable Bogoliubov kernel K. We would have:
T*H%T _ EIF\}PA 4 [Hoxc

with ERFA the expression in our theorem and H®° > 0 (excitations).
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Sketch of the proof

Bosonization of the correlation Hamiltonian

o On states with few bosonic excitations, H$; acts similarly to:

Hy = Z€|p’d’a|c;,acpyoé
P

e If the theory was truly bosonic, the ground state would have the form:

E=T9, T = exp { Z Ko p(p)epac—pps — h.c.}
a,B,p

for a suitable Bogoliubov kernel K. We would have:
T*H%T _ EIF\}PA - [Hexe
with ERFA the expression in our theorem and H®° > 0 (excitations).

e Take ¢ = TN as a fermionic trial state. We have (&, N*¢) < C.
Approximate bosonization is justified, and we get Ez(v < EIF\{,PA + o(e).
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Sketch of the proof

Lower bound: a priori estimates

e Let V continuous, V(k) > 0. The following inequality holds:

NQA N
Zv i) 2 V(0) = V().

1<J

The first term is equal to the direct energy in EY¥¥. The second term is a
semiclassical approximation for the exchange energy:
V(0)

dady V (z = y)lwn (z;9)* = -t O(e) -

1
2N
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Sketch of the proof

Lower bound: a priori estimates

e Let V continuous, V(k) > 0. The following inequality holds:

NQA N
Zv i) 2 V(0) = V().

1<J

The first term is equal to the direct energy in EY¥¥. The second term is a
semiclassical approximation for the exchange energy:

dedy V(x — y)lon (@) = Y 4 o).

1
2N 2

e Let v € FIN) such that E(y) < ENF.
Let £ = R*1. Using that (v, K¢) = —tre?Awy + (€, Hoé), we easily get:

EN" > ENT + (¢, Hoé) —

e A priori estimates: (¢, Hy¢) < Ce, which also implies (£, N¢) < ON'/3,
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Sketch of the proof

Non-bosonizable terms

e The a priori estimate allow to use approximate bosonization.

e However, many terms in the correlation Hamiltonian are not
bosonizable! Example:

1 9 * * *
&= N Z V(p)D,D, , D, = Z Aoy pk — Z A pQk
P k:k+p,k¢B, k:k—p,keB,
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Sketch of the proof

Non-bosonizable terms

e The a priori estimate allow to use approximate bosonization.

e However, many terms in the correlation Hamiltonian are not
bosonizable! Example:

1 9 * * *
&= N Z V(p)D,D, , D, = Z Aoy pk — Z A pQk
P k:k+p,k¢B, k:k—p,keB,

o lst try. (€,£&) < ON7YHE N?E) < Ce. Same order as E§;, not good.
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Sketch of the proof

Non-bosonizable terms

e The a priori estimate allow to use approximate bosonization.

e However, many terms in the correlation Hamiltonian are not
bosonizable! Example:

1 9 * * *
&= N Z V(p)D,D, , D, = Z Aoy pk — Z A pQk
P k:k+p,k¢B, k:k—p,keB,

o lst try. (€,£&) < ON7YHE N?E) < Ce. Same order as E§;, not good.

Better. If all modes in & were at distance > N—5%3 from 0B,,

c
<§781§> < N<£a~/\/'§_5€> ) N%_(; = Z a,tak

dist(k,B,)>N" 5+

Using that ./\/'%75 < CN39Hy, we would then get (¢, &16) = o(e).
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Sketch of the proof

Non-bosonizable terms

e The a priori estimate allow to use approximate bosonization.

e However, many terms in the correlation Hamiltonian are not
bosonizable! Example:

1 9 * * *
&= N Z V(p)D,D, , D, = Z Aoy pk — Z A pQk
P k:k+p,k¢B, k:k—p,keB,

o lst try. (€,£&) < ON7YHE N?E) < Ce. Same order as E§;, not good.

Better. If all modes in & were at distance > N—5%3 from 0B,,

O *
<§781£> S N<£?N§_5€> ) N%_(S = Z akak
dist(k,B,) >N~ 50

Using that ./\/'%75 < CN39Hy, we would then get (¢, &16) = o(e).

o Gapless modes. Their number is much smaller than N2/3, thanks to
refined lattice counting arguments (which I will not discuss).
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Sketch of the proof

Bosonization of the kinetic energy

e In order to compare Hy with Dy, we write:

<€7 HO£> - <£7 ]D)Bg> + <£7 (HO - DB)§>

The first term contributes to the correlation energy. The second term
almost-commutes with the ¢, o operators. Hence:

<£’ (HO - ]D)B)£> =~ <T*£a (HO - DB)T*£> :

For the upper bound, T*¢ = Q! Not true for the lower bound...
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Sketch of the proof

Bosonization of the kinetic energy

e In order to compare Hy with Dy, we write:

<£7 HO£> - <£7 ]D)Bg> + <€7 (HO - DB)§>

The first term contributes to the correlation energy. The second term
almost-commutes with the ¢, o operators. Hence:

(& (Ho — Dp)§) = (T7¢, (Ho — Dp)T™¢)
For the upper bound, T*¢ = Q! Not true for the lower bound...

e Lower bound. Recall that, by approximate bosonization:
(€ (D5 + Q)8) ~ EY™ + (T, H™°T*¢)

The excitation Hamiltonian H®*¢ is positive. Up to a new Bogoliubov
transformation Z, it can be used to control —Dg:

Z"H™Z > Dg (exact if the operators were truly bosonic.)

Marcello Porta s Correlation energy November 29, 2021

21 /24



Norm approximation

Norm approximation of quantum dynamics
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Norm approximation

Excited states?

e The previous analysis gives a rather precise understanding of the
low-energy states of our mean-field problem.

e Natural guess: describe excited states in terms of

U(p1s...50m) == RTc"(p1) - " (pm)Q,  with ¢; = @i(p, )

for ¢; eigenstates of the bosonic excitation Hamiltonian.
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e Natural guess: describe excited states in terms of
U(p1s...50m) = RIc (p1) - c*(pm)Q,  with ¢; = pi(p, @)

for ¢; eigenstates of the bosonic excitation Hamiltonian.

e Our bounds are not good enough to resolve the excitation spectrum.
However, one can understand ¥(-) as approximate eigenstates, by
proving that they are almost invariant under quantum dynamics.
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Norm approximation

Excited states?

e The previous analysis gives a rather precise understanding of the
low-energy states of our mean-field problem.

e Natural guess: describe excited states in terms of
U(p1s...50m) = RIc (p1) - c*(pm)Q,  with ¢; = pi(p, @)

for ¢; eigenstates of the bosonic excitation Hamiltonian.

e Our bounds are not good enough to resolve the excitation spectrum.
However, one can understand ¥(-) as approximate eigenstates, by
proving that they are almost invariant under quantum dynamics.

e More precisely, one would like to argue that, for long times:
eI (g1 o) 2 e T OERTHER (401 105 0)

-
where ¢; ; = e 5"/,
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Norm approximation

Norm approximation for quantum dynamics

Theorem (BNPSS, Annales Henri Poincaré 2021)

Let V(k) be compactly supported and nonnegative. Then, for any m € N and
for any t € R:

HF

Hefmm/s‘l’(%; i Om) — e HHOENHET g () o eom,t)H < Cme 1]

Remarks.

e The macroscopic time scale is t = O(1). In fact, in our semiclassical
scaling, the typical velocity of the particles is O(1).

e The vector ¥(-) is an N-particle state, and convergence holds in the
L?(T3N)-norm.

e First result about norm-approximation of many-body quantum dynamics
in terms of an effective dynamics. Previous convergence results, at the
level of density matrices:

Benedikter, P., Schlein '14 ; 4 Jaksic, Saffirio '16;  Saffirio et al. ’21.
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Conclusions

Conclusions

e We rigorously computed the leading order in IV of the correlation energy
for fermionic systems in the mean-field regime, nonperturbatively.

e Proof based on rigorous bosonization. It allows to justify the Random
Phase Approximation of Bohm-Pines, for the ground state energy.

e The method can be used to prove a norm approximation for the
many-body evolution of a class of states, in terms of a simpler effective
dynamics for the excitations around the Fermi surface.

e Similar ideas (patch-free) work in the completely different setting of
dilute Fermi gases. They allow to understand the ground state energy as
the energy of a quasi-free Bose gas [Falconi, Giacomelli, Hainzl, P. ’21.]
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Conclusions

Conclusions
e We rigorously computed the leading order in IV of the correlation energy
for fermionic systems in the mean-field regime, nonperturbatively.

e Proof based on rigorous bosonization. It allows to justify the Random
Phase Approximation of Bohm-Pines, for the ground state energy.

e The method can be used to prove a norm approximation for the
many-body evolution of a class of states, in terms of a simpler effective
dynamics for the excitations around the Fermi surface.

e Similar ideas (patch-free) work in the completely different setting of
dilute Fermi gases. They allow to understand the ground state energy as
the energy of a quasi-free Bose gas [Falconi, Giacomelli, Hainzl, P. ’21.]

o Extension to Coulomb interactions?
e High density/thermodynamic limit?

e Superconducting instability?
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